Blackjack Variance

  1. Poker Variance Definition
  2. Blackjack Variance Chart
  3. Poker Variance Calculator
  4. Negative Variance Blackjack

Create your own raffle

Our website is the only website which allows users to create raffles and take all the profit from it, which is guaranteed. This is something you probably didn't see before on any other rust gambling website. Other websites create raffles themselves and take ~10%-25% more then the item's worth. We allow you to do that and in the same time the creator of the raffle can get only 5% if he wants, which is much lower than our competitors take. As the creator you can choose to take 5%, 10% and 25% more than your item's worth. Obviously, 5% will help him get the profit faster since the 5% raffles should end first.

Example of how you make profit as a raffle creator

Poker Variance Definition

  1. Apr 22, 2019 Ordinary titles are interesting, but adult Slots take the game a step further; Adult slots are 'sexy games' where the graphics are.a bit unusual. Picking a new favorite from a myriad of online.
  2. Variance a term we all hear a lot but may not fully understand what it is. In a gambler’s world, if they hear this they will just say “hey that’s just a fancy word for luck”. By definition it is simply the difference in the expected advantage and the actual results produced.

Looking at the blackjack chart, the blackjack strategy card tells us to stand whenever you have 17 points or more in your hand, regardless of what the dealer is showing for an up card. Reduce the value of your hand by one point to 16, and the chart says to stand when the dealer’s up card is a 6 or lower. This variation applies the same procedure of play as nearly all blackjack variations, and the difference comes in the inclusion of the Perfect Pairs and 21+3 side bets. The Perfect Pairs side bet allows gamblers to stake on the possibility of the first cards that they are dealt being the same. 21+3, on the other hand, is based on the first two. Forum; Free Blackjack Forums; General Blackjack Forum; Don/other experts, How to find covariance of a game?

1. You create a raffle with an item worth 100 credits with 10% fee (that means you will get 100 credits + 10%, so 110 credits).

Blackjack Variance Chart

2. You choose a maximum number of tickets which can be between 2 and 100. The price of a ticket is 100 credits + 10%, so 110 divided by the number of tickets, which for example is 100. So the price of one ticket to join your raffle will be 1.1 credits.

3. When all the tickets are bought, a winner is picked and you get the credits payed for all the tickets, which in this case would be 110 credits, and the winner will receive the item. So you will get a 10 credits profit just by creating a raffle. Obviously, you will always end up in profit and you can create as many raffles as you want.

How to create a raffle

Steps here.

How to join a raffle

Steps here.


The Kelly Criterion is a bet-sizing technique which balances both risk and reward for the advantage gambler. The same principle would work for any investment with an expectation of being profitable. For the gambler/investor with average luck bankroll and a fixed bet size, the expected bankroll growth after one bet is:

For example, suppose a casino ran a promotion in craps where the 2 paid 3 to 1 and the 12 paid 4 to 1. A 3, 4, 9, 10, or 11 still pay 1 to 1 and every other total loses. The probability of a 2 or 12 is 1/36 each, of any even money win is 14/36 and of a loss is 20/36. Suppose also the player bets 1% of his bankroll every bet. Then the expected bankroll growth per bet would be:

(1 + (0.01*3))^(1/36) * (1 + (0.01*1)^(14/36) * (1 + (0.01*-1))^(20/36) * (1 + (0.01*4))^(1/36)) - 1 = 0.00019661.

FanDuel - Sports betting. Fanduel sportsbook nj. See full terms at Gambling problem? Call 1-800-GAMBLER, in WV visit, in Indiana call 1-800-9-WITH-IT, in CO call 1-800-522-4700, or if in TN. FanDuel Sportsbook offers the best odds on your favorite sports and online in-game betting year-around. Join today and claim your $500 Risk Free Bet!

This product is maximized by Kelly betting. Kelly betting also minimizes the expected number of bets required to double the bankroll, when bet sizing is always in proportion to the current bankroll.

The Kelly bet amount is the optimal amount for maximizing the expected bankroll growth, for the gambler with average luck. While betting more than Kelly will produce greater expected gains on a per-bet basis, the greater volatility causes long-term bankroll growth to decline compared to exact Kelly bet sizing. Betting double Kelly results in zero expected growth. Anything greater than double Kelly results in expected bankroll decline. What is more commonly seen is betting less than the full Kelly amount. While this does lower expected growth, it also reduces bankroll volatility. Betting half the Kelly amount, for example, reduces bankroll volatility by 50%, but growth by only 25%.

For simple bets that have only two outcomes, the optimal Kelly bet is the advantage divided by what the bet pays on a 'to one' basis. For bets with more than one possible outcome, the optimal Kelly wager is that which maximizes the log of the bankroll after the wager. However, for bets with more than one outcome, that can be hard to determine. Most gamblers use advantage/variance as an approximation, which is a very good estimator. For example, if a bet had a 2% advantage, and a variance of 4, the gambler using 'full Kelly' would bet 0.02/4 = 0.5% of his bankroll on that event. Remember that variance is the square of standard deviation, which is listed for many games in my Game Comparison Guide.

Let’s look at three examples.

Blackjack variance calculator

Example 1: A card counter perceives a 1% advantage at the given count. From my Game Comparison Guide, we see the standard deviation of blackjack is 1.15 (which can vary according to the both the rules and the count). If the standard deviation is 1.15, then the variance is 1.152 = 1.3225. The portion of bankroll to bet is 0.01 / 1.3225 = 0.76%.

Example 2: A casino in town is offering a 5X points promotion in video poker. Normally the slot club pays 2/9 of 1% in free play. So at 5X, the slot club pays 1.11%. The best game is 9/6 Jacks or Better at a return of 99.54%. After the slot club points, the return is 99.54% + 1.11% = 100.65%, or a 0.65% advantage. The Game Comparison Guide shows the standard deviation of 9/6 Jacks or Better is 4.42, so the variance is 19.5364. The portion of bankroll to bet is 0.0065 / 19.5364 = 0.033%. By the way, this exact promotion is going on at the Wynn as I write this, for September 2 and 3, 2007.

Example 3: A sports wager has a 20% chance of winning, and pays 9 to 2. The advantage is 0.2×4.5 + 0.8×-1 = 0.1. The optimal Kelly wager is 0.1/4.5 = 2.22%.

Following is the exact math of example 3. Let x be optimal Kelly bet, with a bankroll of 1 before the bet. The expected log of the bankroll after the bet is..

f(x) = 0.2 × log(1+4.5x) + 0.8 × log(1-x)

To maximize f(x), take the derivative and set equal to zero.

f'(x) = 0.2 × 4.5 / (1+4.5x) - 0.8 / (1-x) = 0

Poker Variance Calculator

0.9 / (1+4.5x) = 0.8/(1-x)

0.9 - 0.9x = 0.8 + 3.6 x

4.5x = 0.1

x = .1/4.5 = 1/45 = 2.22%

The math gets much messier when there is more than one possible outcome, such as in video poker. The method is still the same, but getting the solution for x is harder. The easiest way to solve for x in such cases, in my opinion, is experimenting with different values, using the higher and lower techniques (like the Clock Game on the 'Price is Right'), until the f'(x) gets very close to zero.

I did this for two common video poker games with greater than 100% return. For 'Full Pay Deuces Wild,' with a return of 100.76%, the optimal bet size is 0.0345% of bankroll. For ' 10/7 Double Bonus,' with a return of 100.17%, the optimal bet size is 0.0062637% of bankroll. I have heard a rule of thumb that to make it in video poker you should have a bankroll of 3 to 5 times the royal amount you play for. If playing Full Pay Deuces wild, the exact amount is 3.66 royals. For 10/7 Double Bonus it is 19.96 royals.


To prove my statement that Kelly minimizes the number of bets to double the bankroll I assumed an even money bet with a 51% chance of winning, for a 2% advantage, and 2% Kelly bet size. Here is how many bets were required on average to double the bankroll at various bet sizes. If a winning wager would put the bettor over double the bankroll, he would only bet what was needed to exactly double the bankroll.

Average Bets to Double Bankroll

Bet SizeAverage Bets

Kelly Vs. Optimal Video Poker Strategy

In my Sep. 20, 2007 Ask the Wizard column I suggested the Kelly bettor should sometimes not play optimal video poker strategy. My reasons are explained there.

Links on Kelly

German translation of this page.

Fortune’s Formula by William Poundstone. Read my review.

A good source on Kelly, especially as it pertains to blackjack, is Blackjack Attack by Don Schlesinger. has good material on Kelly, including the article 'A Quantitative Introduction to the Kelly Criterion', part I and part II, and a Kelly calculator.

Negative Variance Blackjack

The Kelly Criterion at Wikipedia.

Written by: Michael Shackleford